JET FLOW IN A POROUS LAYER

Yu. A. Bueviech and G. A. Minaev UDC 66.096.5:532.525.2

The problem of fluid (gas) flow originating during jet injection in a cylindrical apparatus
filled with a porous layer of finite height is solved. Pressure and velocity distributions
in the layer are obtained. The influence of the walls of the pipe containing a granular
layer on the velocity profile of a one-dimensional filtration layer is investigated.

The question of the nature of the gas or fluid-drop stream distribution in porous media is quite im~
portant for the analysis of the operation, simulation, and computation of diverse technological apparatuses
in which a stationary granular layer or other porous material is used at the working body. Various heat
exchangers [2], metallurgical industry apparatuses [3], catalytic chemical reactors [4, 5], etc,, are examples,
Moreover, in a number of cases, the filtration of a fluid in a stationary granular embankment can be con-~
sidered as the simplest model of real fluid phase motion in almost homogeneous fluidized beds,

A large quantity of experimental and industrial data about the organization of filtration streams under
quite different conditions and apparatuses has been accumulated up to this time. However, theoretical
models of many important classes of flows, including jet flows, which would permit generalization of exist-
ing data from a single viewpoint are substantially lacking. A comparatively simple linear problem about
jet propagation in a bounded porous layer is investigated below, whose solution affords the possibility of
making a number of deductions which are useful in purely practical respects.

Let us investigate the motion in a porous layer of height H which is in a cylindrical apparatus of ra-
dius R (see Fig. 1). A fluid jet is delivered through an orifice of radius ry in the z=0 plane of the Iayer
base which is coaxial with the walls of the apparatus; the total mass flow rate Q is considered given, and
the mean fluid velocity in the orifice section is U =Q/ (ﬂr%) . It is required to find the fluid velocity and pres-
sure fields in the domain 0=r <R, 0=z =H.

For definiteness, let us consider the rate of fluid filtration u associated with the mean velocity in the
pore space u® by the relationship u =eu{), We consider the layer porosity € homogeneous (it is easy to
examine the influence of random fluctuations in & on the flow directly by using the method developed in [6]).
Then the Darcy equations are

—yp - dyg —au =0, divy =0. o

The flow drag @u, exerted by a porous body per unit layer volume, is taken linear in the velocity u,
which is strictly valid just for the inertialess filtration mode characterized by small values of the Reynolds
number computed with respect to the microstructure scale of the porous material, This force is nonlinear
in the inertial mode which is realized quite often for coarsely dispersed granular layers; in that case the
quantity eu should be considered as some approximation to the true drag which is valid in a definite range
of variation in u.

For the determination of (1) we impose conditions of nonpenetration of the apparatus walls (the nor-
mal filtration velocity component vanishes at the walls), symmetry relative to the r =0 axis, constancy of
the pressure at the upper layer boundary z =H, and the condition of jet fluid inflow at the lower boundary
{the normal velocity component goes over into a given function U for r < r, and vanishes for ry=r <R).

Introducing the excess pressure function
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Fig. 1. Diagram for formulating the problem of jet flow in a porous layer
of finite height,

Fig. 2. Characteristic transverse (a) and longitudinal (b) velocity compo-
nent profiles in a layer of great height,

¢ =p—dg—H)
and measuring the pressure from its value at z=H, we obtain the following problem from (1):
Ap=0, u=—alyg,
p<Coo, dp/or =0 (r =0); dp/dr =0 (r=R),

de

¢ =0 (=Hi=—==—F() ={ —al, 0 <r<r,,
Z

:0‘ 3
0, ry<r<R, =9 ®

Solving the problem (3) by separation of variables, we have the following for an elementary solution
satisfying the condition at r =0:
C (e + ey J, (), 4@
where Jy,(x) is a Bessel function. Determining the parameter A and the constant 8 from conditions (3) for
r =R and z =H, we obtain the solution in the form of the following superposition of elementary solutions 4):

— | —hmZ ~Am(2H—2 ™
= pH =2+ X Gl — ) ),y = T )

where v and Cyy, are constant coefficients, and 7., are the roots of the equation J;¢)=0.
Using (5), we write the conditions for z=0 in (3) as

¥+ D (1€ €T () = F (), 6)

m

which can be considered as Dini—Bessel's condition in the function F(r) defined in (3). Using the known defi-
nition of the coefficients of this series, we obtain the representation

R
2 0 r, \2 . a@
v o= () -2
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Introducing the dimensionless parameters and mean velocity in the section u,, by means of the equali-

ties ]
& b & B=R 1 2 H), 4= (GRYQ, ®
we finally obtain from (5) and (7)
9 eMmb om0 J, (0,8) Ty (k)
_ . 2z S T VR R )
¢ =oau R {h £+ . 2 1+ e 2tmh Nds (M) }
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Fig. 3. Velocity profiles at the upper layer boundary for layers of dif-
ferent heights.

Fig. 4. Dependence of the velocity profile on the parameter ¢ for T=1,

The summation in (9) is performed over all roots of the function J;f) in increasing order. The veloc-
ity components can easily be calculated from (9) in conformity with (3) and the true pressure can be com-
puted by using 2).

In real situations ordinarily ry «R, ry; «H, Considering the external flow domain (domain III in Fig.
1) in which the inequalities £y« §, £y« are satisfied, but £ €1, £ €h, we obtain approximately from (3)
and (9)

¢ ~Nmb _ ,Np(2h—0)
(p:OCumR{h—§+2€ - e——'?nmh ) JO()TIME) }’
g’_ _ "1 e"'nm: _ e_ﬂm(Qh—g) ) JI (nmg) (10)
U, L 1 -z Mt Jomy)

u

«

I T L Y )
) } E 1-+ e——?nmh szl (nm) )

The expressions (10) are independent of the orifice radius r;, which corresponds to the extensively
known representation of a real jet far from the site of its injection as a "jet-source" escaping from a point
orifice (see [7], for example). Moreover, it can be asserted that the external asymptotic expansions (10)
which describe the flow field in domain IIl are also independent of the orifice shape and its veiocity diagram.
The latter justifies use of the assumption about the uniform velocity distribution in the injected jet section
made in (3).

In high layers, when h>¢ >1, the formulas (10) simplify considerably. In this case it is sufficient
to take account of just several members in the series (10). Characteristic profiles of the velocity compo-
nents u, and uy,, computed from (10) taking into account just the members corresponding ton;~3.8 and
7,~7.0, are illustrated in Fig. 2 in the particular case of a high layer h—=, As follows from (10) and
from Fig. 2, the velocity on the jet axis (u,/ux), -, decreases asymptotically along the length. If the char-
acteristic length of building up the uniform profile ! is defined as that value of the coordinate z for which
the axial velocity differs by not more than 10% from its asymptotic value ux, then we have

'~ 1.1L. 11
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Finally, the velocity distributions u, on the upper layer boundary are presented in Fig. 3 as a func-
tion of its dimensionless height.* The curves of Fig. 3 afford a possibility of selecting the height of a
layer of given radial dimension R in such a manner as to assure the required steam equilibration at the
exit from the layer.

In the domain directly adjoining the orifice ({domain I in Fig. 1), the series (9) is quite inconvenient
for practical utilization because of its slow convergence. It is simpler to obtain the internal asymptotic
which characterizes the flow in the domain mentioned where £ ~&,, £ ~£,, but £ <1, ¢ «h, by repeating
the solution (3) under the conditions R —~«, H-~«, Using a Fourier—DBessel integral instead of Dini—~
Bessel's condition, we obtain

o= X gle*’"le () I, 00 2
nr, ; A

__ Q J —Az
U, = —n?j‘e jl(;\.fo).lo(kr)dx, (12)
0

u, = Q g e, (Arg) Iy (Ar) dA

instead of (10) by the previous method.

The integrals in (12) can be expressed as series in hypergeometric functions, and the expression for
u, can be written also in terms of the associated Legendre function of the second kind. Therefore, the flow
in the interior domain depends essentially on the size of the orifice, but noton the parameters characteriz-
ing the shape of the porous layer itself. The practical values of (12) are not very large; however, they
turn out to be useful in analyzing the stresses originating in a friable medium in direct proximity to the jet
mouth, as well as in studying the heat and mass transport in the near-lattice zone of some reactors,

In the majority of cases there is an intermediate domain in real apparatuses in which the inequalities
Ey<t, byt and & «1, { «<h (domainII in Fig. 1) are satisfied simultaneously. We obtain the intermediate
asymptotic which is valid in this domain from (12) by expanding the function J; (\ry) in a power series of the
argument and by using just the first member of the series. We consequently have

aQ Q

o= = U=V = ———
2y 2 4 r? 2 ' 2m (22 + r%)

(13)

The flow in the intermediate domain is dependent on neither the orifice characteristic nor the exter-
nal layer parameters. The velocity of this flow is directed along the radius-vector from the jet mouth and
depends only on the distance to it., The characteristic streamlines in all three motion domains are also
shown in Fig. 1.

Let us emphasize that the fluid velocity at any point of the layer is determined entirely by the posi-
tion of this point, by the total fluid discharge, and by the system geometry, but is independent of the dy-
namical parameter o characterizing the drag of the porous material,

The results obtained are also applicable to an approximate analysis of jet flow in a broad layer in
the presence of a large number of jets issuing from orifices in a grating if half the mean distance between
the centers of adjacent orifices is taken as R. Then the formulas presented above will approximately
describe the evolution of the flow produced by an individual jet under conditions of motion constrained by
adjacent jets. In particular, the height above the grating, where the flow becomes comparatively homo-
geneous, will be described by (11), as before.

* Shown in Figs. 2 and 3 are velocity profiles computed approximately with terms corresponding just to
7, and 1, taken into account. Such an approximation is degraded with the diminution of £ or h. Thus, for
example, it follows from an examination of the velocity profiles at the exit from the layer in Fig. 3 that
the error in the computation becomes significant for hZ 0,2-0.3. For such small h it is certainly neces-
sary to take intoaccount a greater number of terms in the series (10) in the calculations.
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Let us note that as follows from an analysis, the gravity field affects just the true pressure p in the
layer, but the excess pressure ¢ and the fluid velocity u are independent of it. This means that the for-
mulas obtained are valid for an arbitrary location of the apparatus in space (for example, for horizontal
injection of the jet when g is normal to the z axis, for injection from above, etc.),

As follows from (10). the velocity profile uy approaches the rectilinear u, =u, with the increase in
¢. It is interesting to clarify under which conditions this asymptotic profile will actually be almost rec-
tilinear. This problem is of considerable independent interest, since profiles of quite distinct form are
obsgerved in real apparatuses [1-5], and any general rule permitting the prediction of the realization of
a profile of some kind is unknown.

From the physical viewpoint, the distortion of a rectilinear profile is due to two factors. Firstly,
the apparatus walls exert a decelerating effect on the flow which is especially substantial in the near-wall
region where the velocity gradients are relatively large. Secondly, for grainy layers the local porosity
in direct proximity to the wall is ordinarily greater than in the core of the layer. This latter results in a
lowering of the drag in this layer and in the possibility of the fluid "passing through." If the first factor
predominates, the maximum filtration velocity is reached at the center of the pipe, but this velocity is al-
most zero at the wall [8]. If the second factor is more substantial, the limit filtration velocity does not
vanish upon approaching the wall, and in a number of cases the maximum velocity is located precisely near
the wall. Profiles of both kinds are observed in experiments [1-5],

Limiting ourselves to an analysis of one-dimensional stationary flow in a pipe filled with a porous
material, let us take account of the presence of a domain of elevated porosity at the wall by using a two-
layer model first introduced in [9]. Within the framework of the model, the material is assumed homo-
geneous everywhere except in a thin "free, " near-wall layer in which the porosity is one. This model had
successfully been used earlier in investigating the flow of suspensions in capillaries [8, 10].

The free-layer thickness Ais proportional to the scale of the material microstructure, Using the
grain radius a as such a scale for the grainy layer, we write

A = ka. (14)

According to the Oliver test data from [10], the coefficient k in (14) is approximately 0.7.

Let us write the equations of motion in the stream core and in the free layer:

» 4 (,hduz )__auz:_-P; 0<r< R—A,
r dr \ dr

15)

R i(rﬂz——):—P; R—ALr<R, e
r dr \ dr |

where u is the "apparent” viscosity of the fluid being filtered, which differs from its physical viscosity u,

and P is the longitudinal excess pressure gradient. The first equation in (15) is a particular case of the

modified Darcy equations obtained rigorously in [11], where an estimate of the quantily 4 has also been

given for moderately concentrated systems (€ > 0.7-0.8). For closely packed grainy layers the exact

value of 4 is not known but it can be considered that y ~u,.

The usual conditions of boundedness and symmetry relative to the r =0 axis and the condition that
u, vanish for r =R are imposed on the solution of (15). The condition on the interface r =R — A of the two
flow domains is obtained from the following reasoning. Firstly, the fluid velocity should be continuous
during passage through this boundary at points in the gaps between particles and should vanish at points on
the particles. It hence follows that the filtration velocity u, which agrees with the true fluid velocity in
the free layer should be continuous on the boundary mentioned. Secondly, (15) can be considered as a
single equation defined in the whole domain 0=<r<R, but having discontinuous coefficients. Using standard
methods of analyzing such equations at surfaces of discontinuity, the continuity conditions for the tangential
stress on the boundary r =R —A can easily be found from (15). Thus

#,<oo; Ou/0r =0 (r=0); 4, =0 (r = R),

du, | du, (16)
Ulp a0 =1 ’R—A+0’ MT [R—A—0 == pe | R—a+d.

Omitting simple, but tedious, computations, let us write the solution of the problem (15), (16) as
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u,=i[1—r—’°—‘i§)—]; 0<t<l—5

@ 1y(0)
(PR _ Nq_g__L[PR IV
u'—( 24, C)(l 9 ( %o +”)(-1 O 1—-8<E<l, an

where the constants T and ¢ are expressed as follows:
T = I,(0) [1,(0) + %081 (0)][1 — = (cd)?],

2
PR P a1,
2p, ad

(18)

C =

where I (x) is the Bessel lunction of imaginary argument and the following dimensionless quantities have
been introduced:

x= s 6=A~; 0=(L)UQR, 19)
Mo R

Only the principal members of the expansion in thesmall parameter 6 have been taken into account in
(17) and (18); it is impossible to neglect the powers of the quantity o6 in the general case since ordinarily
o >»1 and possibly o6 ~1.,

It is convenient to express the quantity P in terms of the velocity u,, from (8). Neglecting the fluid
flow in the thin near-wall layer, we obtain the expression
7 b

¢ (o) @0

P=auw[ 1—

from the condition of equality of the total stream to a given quantity Q.

Let us investigate the velocity profile in the stream core in greater detail. From (17) and (20) we
have

L =[1—£-M}_1[1—T——~I“(G§)] (21)
u o L0 L I

i.e., the profile depends on two parameters, T from (18) and o from (19).

©

Let 06«1 (either the free layer is quite thin or the drag in the grainy layer is low). Then T=1, the
velocity at the wall equals zero in conformity with (21), and we actually arrive at a solution of the same kind
as had been obtained earlier in [8]. The profile u, depends on ¢ by changing from the parabolic at ¢~ 0 to
the rectangular at ¢ —» (see Fig. 4). Therefore, the presence of a porous material in the pipe results in
improvement in the velocity profile in the whole flow with the exception of the near-wall region where its
steepness is increased,

Now, let 06> 1. In this case, T from (18) is less than one and the velocity limit (21) differs from
zero on approaching the wall. Indeed, taking into account that I () »1 for o >»1, we have from (21)

tabas oy p (22)
u, |§=0

Two situations are possible. If T>0 (the product ¢6 is not too large), the velocity has a maximum at
the pipe center, as before, but increases monotonically in the free layer from zero at the wall to the limit
value determined in (22) at the boundary r =R —A. If T <0, then this limit value is greater than the velocity
at the pipe axis, and the velocity has a maximum in the free layer. The critical value of the quantity o6 at
which T vanishes is

(08) = %7t = py/u. ©@3)
Let us note that the relationship (23) can turn out to be useful in esfimating y from experiments.

As follows from an analysis, the filtration velocity profile is actually almost rectilinear in the whole
apparatus cross section, for o>»1, except in a very narrow near-wall zone whose characteristic thickness
decreases with the growth in o.
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It has been assumed implicitly above that the continuity of the material is conserved during jet propa-
gation. This assumption is false for high discharges Q and small orifice dimensions rj for grainy layers
when the formation of practically particle-free caverns or channels is possible near the orifice [12]. How-
ever, determination of the conditions for local spoilage of the continuity of the grainy layer and the begin-
ning of channel formation therein is beyond the scope of this paper.

NOTATION

a, radius of grainy layer particle; d;, fluid density; F, function in (3); g, acceleration of gravity;
H, layer height; h, dimensionless layer height in (8); k, coefficient in (14); I, length of displacement in
(11); P, excess pressure gradient; p, pressure; Q, total fluid discharge; R, pipe radius; r, radial co-
ordinate; ry, orifice radius; T, parameter in (18); U, mean velocity in the plane of the orifice; u, filtra-
tion velocity; u., asymptotic velocity; z, longitudinal coordinate; «, drag coefficient; A, free sublayer
thickness; 6, dimensionless thickness in (19); &, porosity; ¢, dimensionless longitudinal coordinates;
Ny Bessel function roots; w, ratio between the viscosities in (19); Ay, , parameters in (5); u, apparent
viscosity of the fluid being filtered; ugy, physical fluid viscosity; £, dimensionless radial coordinate; £,
dimensionless orifice radius; ¢, excess pressure in (2); o, parameter in (19).
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